A projection-based error analysis of HDG methods for Timoshenko beams
نویسندگان
چکیده
In this paper, we give the first a priori error analysis of the hybridizable discontinuous Galerkin (HDG) methods for Timoshenko beams. The analysis is based on the use of a projection especially designed to fit the structure of the numerical traces of the HDG method. This property allows to prove in a very concise manner that the projection of the errors is bounded in terms of the distance between the exact solution and its projection. The study of the influence of the stabilization function on the approximation is then reduced to the study of how they affect the approximation properties of the projection in a single element. Surprisingly, and unlike any other discontinuous Galerkin method, this can be done without assuming any positivity property of the stabilization function of the HDG method. We apply this approach to HDG methods using polynomials of degree k ≥ 0 in all the unknowns, and show that the projection of the error in each of them superconverges with order k + 2 when k ≥ 1 and converges with order 1 for k = 0. As a result, we show that the HDG methods converge with optimal order k + 1 for all the unknowns, and that they are free from shear locking. Finally, we show that all the numerical traces converge with order 2k + 1. Numerical experiments validating these results are shown.
منابع مشابه
A projection-based error analysis of HDG methods
We introduce a new technique for the error analysis of hybridizable discontinuous Galerkin (HDG) methods. The technique relies on the use of a new projection whose design is inspired by the form of the numerical traces of the methods. This renders the analysis of the projections of the discretization errors simple and concise. By showing that these projections of the errors are bounded in terms...
متن کاملVibration analysis of a Timoshenko non-uniform nanobeam based on nonlocal theory: An analytical solution
In this article free vibration of a Timoshenko nanobeam with variable cross-section is investigated using nonlocal elasticity theory within the scope of continuum mechanics. Small scale effects are modelled after Eringen’s nonlocal elasticity theory while the non-uniformity is presented by exponentially varying width through the beam length with constant thickness. Analytical solution is achiev...
متن کاملVibration analysis of a Timoshenko non-uniform nanobeam based on nonlocal theory: An analytical solution
In this article free vibration of a Timoshenko nanobeam with variable cross-section is investigated using nonlocal elasticity theory within the scope of continuum mechanics. Small scale effects are modelled after Eringen’s nonlocal elasticity theory while the non-uniformity is presented by exponentially varying width through the beam length with constant thickness. Analytical solution is achiev...
متن کاملVibration Analysis of Multi-Step Bernoulli-Euler and Timoshenko Beams Carrying Concentrated Masses
In this paper, vibration analysis of multiple-stepped Bernoulli-Euler and Timoshenko beams carrying point masses is presented analytically for various boundary conditions. Each attached element is considered to have both translational and rotational inertias. The method of solution is “transfer matrix method” which is based on the changes in the vibration modes at the vicinity of any discontinu...
متن کاملAn Analysis of HDG Methods for the Helmholtz Equation
The finite element method has been widely used to discretize the Helmholtz equation with various types of boundary conditions. The strong indefiniteness of the Helmholtz equation makes it difficult to establish stability estimates for the numerical solution. In particular, discontinuous Galerkin methods for Helmholtz equation with a high wave number result in very large matrices since they typi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 81 شماره
صفحات -
تاریخ انتشار 2012